DIRECT TORQUE CONTROL OF THREE PHASE INDUCTION MOTOR USING FUZZY LOGIC SPEED CONTROLLER FOR STEADY/DYNAMIC STATE RESPONSE

1C. MOHAN RAJ, 2K. KEERTHIVASAN, 3RANJITH KUMAR DINAKARAN, 4N. PUSHPALATHA

1(M.E), 2M.E. (Ph.D), Karpagam University, Coimbatore
3Assistant Professor, Sri Eshwar College of Engg, CBE
E-mail: c.mohanrajme@gmail.com, skdv1999@gmail.com, drk.ranjithkumar@gmail.com, pushpa_latha_88@yahoo.co.in

Abstract- This paper presents a Space Vector-PWM based DTC control of the three-phase Induction Motor using a fuzzy logic controller (FLC) for good speed regulation and lower electromagnetic torque ripples. Induction Motor has a three phase winding with the operating frequency of 50/60Hz and the operating voltage of 230VAC. DTC is achieved by comparing the motor actual torque and operating flux with the motor reference electromagnetic torque and flux values directly. Conventional DTC method uses the static PI controller in a speed regulation loop to generate the flux reference and torque reference values. The main drawback of the conventional DTC is high stator flux and electromagnetic torque ripples and the speed of Induction motor is reducing under transient and dynamic state of operating condition. These drawbacks were reduced in proposed DTC method. In proposed method, the static PI controller is replaced by the Fuzzy Logic Controller. Fuzzy logic speed controller generates the torque reference value and flux reference value based on the speed error. Simulation results show that the proposed DTC method gives the better performance in the Induction Motor than conventional DTC methods.

Index Terms- FLC- based DTC, IGBT based inverter, PI-Speed controller, Low torque ripples, dynamic response

I. INTRODUCTION

The system employed for motion control is known as an electric drive. In general, electric drives are used to control the motor speed and torque in both steady state and dynamic state operation. Now a day’s 75% of the utility power is consumed by the electric drives. Electric motor converts the electrical energy to mechanical energy. Mechanical energy is supplied to the load through the mechanical shaft. There are two physical quantities describe the state of the mechanical shaft: torque and speed. To control the mechanical power flow to the load, we must control the any one of the two quantities and we speak of ‘speed control’ and ‘torque control’. In torque control mode, the motor speed is decided by the load. Likewise in Speed control mode, torque is decided by the load. There are two types of electric drives namely AC drives and DC drives. In early days DC drives were employed for speed control and torque control. Independent control of field and armature is possible in DC motors. Flux produced by the field winding is always right angle to flux produced by the armature winding. This condition is called ‘field orientation’. In dc motor, field orientation is achieved by the mechanical commutator and brush assembly position. So the maximum torque is achieved irrespective of the rotor position. Speed control and torque control is obtained by independent control of field and armature flux. The main drawback of DC drive is the reduced reliability of the DC motor; the fact that brushes and commutators wear down and need regular servicing; that DC motors can be costly to purchase; and that they require encoders for speed and position feedback. AC drive technology eliminates these drawback because of its rugged construction, maintenance free due to absence of brush and commutator assembly and Low cost. The DC motor performance can also be obtained in AC Induction motor by implementing suitable AC drive control strategy. AC drives are mainly employed for controlling the Induction Motor speed and torque. Induction motor speed control is achieved by the two control methods namely scalar control and vector control shown in Fig. 1. In scalar control the operating quantity’s magnitude is alone controlled. But in vector control method, the operating quantity’s both magnitude and phase angle are controlled. In induction motor drives, the flux and torque depend on the stator current values. Induction motor will have a similar to that of a DC motor if the stator current components namely flux producing and torque producing current are separately controlled. In vector control method, stator current both magnitude and phase angle are simultaneously controlled. Vector control improves the dynamic performance of the Induction motor. During acceleration, deceleration and speed reversal of operation the motor, the speed and torque values are controlled with low ripples. But the vector control method has some drawback, such as; it requires two co-ordinate transformations (Clark-Park transformation and Inverse Clark-Park transformation), current controller for controlling torque producing current and flux producing current and high motor’s parameter sensitivity.

These drawbacks were eliminated in proposed DTC control method. DTC doesn’t require co-ordinate transformation system and motor torque and flux values are directly calculated from the powerful
motor mathematical model. In this proposed DTC method SV-PWM technique is used for controlling the inverter output voltage magnitude and phase. Hysteresis controller is employed for torque and flux control. The main feature of the DTC is simple structure and good dynamic behavior. It improves the motor static speed accuracy, dynamic speed accuracy, torque response and speed response [1-4].

II. PRINCIPLE OF OPERATION OF PROPOSED SCHEME

The basic block diagram of DTC is shown in Fig. 2. In DTC the actual parameters are controlled directly. Here the control variables are motor magnetizing flux and electromagnetic torque. Like a dc machine, Independent speed control and torque control is possible in this scheme [5].

The fuzzy logic control is one of the controllers in the artificial intelligence techniques. Fig. 2(a) shows the schematic model of the DTC of Induction Motor Drive (IMD) using Fuzzy Logic Controller (FLC) based PI controller for Speed ripples and torque ripple controls. In this project, Mamdani type FLC is used and the DTC of IMD using conventional PI-Speed controller requires the precise mathematical model of the system and appropriate gain values of PI controller to achieve high performance drive.

Therefore, unexpected change in load conditions would produce overshoot, oscillation of the IMD speed, long settling time, high torque ripple, and high stator flux ripples. To overcome this problem, a fuzzy control rule look-up table is designed from the performance of torque response of the DTC of IMD. According to the speed error and change in speed error, the proportional gain values are adjusted online as shown in Fig. 2(b).

III. CALCULATION OF AN ELECTROMAGNETIC TORQUE

The three phase and two level VSI is shown in Fig. 4, it has a six switches namely S1, S2…S6. Eight possible voltage space vectors (V0-V7) are achieved by suitable switching position of the Inverter. In eight voltage space vectors, V1 to V6 is active voltage vector and V0, V7 are zero voltage vectors [6-7].

In VSI, the switches S1, S2, S3 are called upper switches and S4, S5, S6 are called lower switches. When the upper part of switches is ON, then the switching value is ‘1’ and when the lower switch is ON, then the switching value is ‘0’ according to the combination of the switching modes are Sa, Sb, and Sc.

The inverter output voltages are calculated from the following equation

$$V_{a_s} = \frac{V_{dc}}{3} [2S_a - S_b - S_c]$$

$$V_{b_s} = \frac{V_{dc}}{3} [-S_a + 2S_b - S_c]$$

These equations are used for the inverter output voltages due to the symmetrical three-phase system.

The electromagnetic torque of the motor is expressed as follows:

\[T_e = (3/2) \times \frac{P}{2} \times (\lambda_s^* \times \lambda_q^*) \]

That is the magnitude of torque can be written as

\[T_e = (3/2) \times \frac{P}{2} \times \lambda_s^* \lambda_q^* \sin \alpha \]

Where \(\alpha \) is the angle between fluxes. The electromagnetic torque angle is given by \(\alpha = \tan^{-1}(\lambda_{ds}/\lambda_{qs}) \). But the estimation of the rotor flux is somewhat difficult. So the electromagnetic torque is calculated from the stationary d-q frame with respect to stator as follows:

The Electromagnetic torque of the motor is expressed as

\[T_e = 1.5 \times \frac{P}{2} \times \left(i_{ds} \lambda_{qs}^* - i_{qs} \lambda_{ds}^* \right) \]

P is no of poles.

The glossary of symbols is summarized as follows:

- \(d^* \), \(q^* \) = Stationary reference coordinates.
- \(V_{ds}^*, V_{qs}^* \) = Stator voltage in d-q coordinates.
- \(i_{ds}, i_{qs}^* \) = Stator current in d-q coordinates.
- \(i_{dq}, i_{qd}^* \) = Rotor current in d-q coordinates.
- \(\lambda_{ds}, \lambda_{qs}^* \) = Stator flux in d-q coordinates.
- \(\lambda_{dq}, \lambda_{qd}^* \) = Rotor flux in d-q coordinates.
- \(L_s, L_r \) = Stator and rotor self-inductance.
- \(L_m \) = Mutual inductance.
- \(I_s \) = Magnetizing current.
- \(R_s, R_r \) = Stator & rotor resistance.
- \(\omega_{ref} \) = Reference Rotor angular speed.
- \(\omega_{actual} \) = Actual Rotor angular speed.

IV. SWITCHING OF AN INVERTER

The stator rotating magnetic field position can be determined by the proper inverter switching. There are eight possible switching position achieved in the two levels VSI fed Induction motor drive. Each switching of the inverter shifts the magnetic field position 60degree from the current position. The switching position has a six active voltage position and two zero voltage position. The eight possible switching positions can be obtained from the following waveform:

Consider an Induction motor with three phase star connected stator winding. Assume that the three phase sinusoidal supply is fed from VSI to the stator winding with 120 degree phase shift irrespective of the frequency. Fig. 5. Shows the Stator Rotating Magnetic field position based on the inverter switching.

When AC voltage is applied to the stator, the current flows through the phase winding. Depending upon the direction of current flow, the magnetic field is developed inside the stator. It assumes that the positive current flow through the phase windings A1, B1 and C1 result in a north pole [8-10].
Table 2. Space Voltage Vector for inverter switching position

<table>
<thead>
<tr>
<th>Wav</th>
<th>Inverter Switching</th>
<th>Switching Value</th>
<th>Space position</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Form Interval (deg)</td>
<td>Position Sb Sb Sc</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0-60</td>
<td>1 0 1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>60-120</td>
<td>1 0 0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>120-180</td>
<td>1 1 0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>180-240</td>
<td>0 1 0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>240-300</td>
<td>0 1 1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>300-360</td>
<td>0 1 0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Zero Voltage</td>
<td>1 1 1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Zero Voltage</td>
<td>0 0 0</td>
<td></td>
</tr>
</tbody>
</table>

V. DIRECT FLUX CONTROL

Motor actual flux is estimated from the equations (9),(10) and (11):

\[
\lambda_{qs} = \int (V_{qs} - R_s i_{qs}) \, dt \quad (9)
\]

\[
\lambda_{ds} = \int (V_{ds} - R_s i_{ds}) \, dt \quad (10)
\]

\[
\lambda_s = \sqrt{\lambda_{qs}^2 + \lambda_{ds}^2} \quad (11)
\]

The actual motor flux is compared with the reference flux value. The flux error value is given as input to the flux hysteresis controller.

\[
\text{Flux error} = \text{reference flux} - \text{actual motor flux} \quad (17)
\]

The flux error value is compared with the hysteresis flux band width (\(\Delta \phi\)). The flux error value is maintained within the allowable hysteresis flux band width limit.

\[
\text{Hysteresis flux acceptable error value} \quad (18)
\]

The output action of the flux hysteresis controller is given in the following table:

<table>
<thead>
<tr>
<th>State</th>
<th>Flux Comparator output ((\phi))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \lambda_s > \Delta \phi)</td>
<td>1 (Increase the flux)</td>
</tr>
<tr>
<td>(\Delta \lambda_s < -\Delta \phi)</td>
<td>-1 (Decrease the flux)</td>
</tr>
</tbody>
</table>

VI. DIRECT TORQUE CONTROL

The torque hysteresis comparator has a three level output. The actual motor torque is compared with the reference torque value. The reference torque value is generated from the PI-Speed controller based on the speed error value.

Electromagnetic torque error value

\[
\Delta T_e = T_e^* - T_e \quad (18)
\]

Torque hysteresis comparator acceptable error value

\[
\Delta T = \Delta T_{\text{upper}} - \Delta T_{\text{lower}} \quad (19)
\]

The actual motor torque in terms of stator flux linkages is calculated from the equation (16):

\[
T_e = 1.5 \times (P/2) (i_{ds} \lambda_{qs} - i_{qs} \lambda_{ds}) \quad (16)
\]

Torque angle \(\alpha(k) = \tan^{-1}(\lambda_{ds}/\lambda_{qs})\) \quad (20)

The output action of the torque hysteresis controller is given below in the table:

<table>
<thead>
<tr>
<th>State</th>
<th>Torque Hysteresis comparator output (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta T_e > \Delta T)</td>
<td>1 (Increase the torque)</td>
</tr>
<tr>
<td>(\Delta T < \Delta T_e < \Delta T)</td>
<td>0 (Torque at zero)</td>
</tr>
<tr>
<td>(\Delta T_e < \Delta T)</td>
<td>-1 (Decrease the torque)</td>
</tr>
</tbody>
</table>

The voltage vector is selected based on the output of the torque and flux hysteresis controller. So that the motor flux and electromagnetic torque values are maintained constant. The three digit binary number represents the switching position of VSI. The digit gives the value of Sa, Sb and Sc. The voltage vector selection is tabulated below [11-12].
Table 5. Voltage vector selection table

<table>
<thead>
<tr>
<th>φ</th>
<th>T</th>
<th>α (1)</th>
<th>α (2)</th>
<th>α (3)</th>
<th>α (4)</th>
<th>α (5)</th>
<th>α (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>110</td>
<td>010</td>
<td>011</td>
<td>001</td>
<td>101</td>
<td>100</td>
</tr>
<tr>
<td>0</td>
<td>000</td>
<td>111</td>
<td>000</td>
<td>111</td>
<td>000</td>
<td>111</td>
<td>000</td>
</tr>
<tr>
<td>−1</td>
<td>101</td>
<td>100</td>
<td>110</td>
<td>010</td>
<td>011</td>
<td>001</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>111</td>
<td>000</td>
<td>111</td>
<td>000</td>
<td>111</td>
<td>000</td>
<td>111</td>
</tr>
<tr>
<td>−1</td>
<td>001</td>
<td>101</td>
<td>100</td>
<td>110</td>
<td>010</td>
<td>011</td>
<td>011</td>
</tr>
</tbody>
</table>

VII. MATLAB SIMULATION RESULTS OF PROPOSED DTC SCHEME

The DTC principle has been simulated using MATLAB/Simulink software. The Simulink model of the DTC scheme for SV-PWM VSI fed IM drive has been presented in Fig. 6. The parameters of the induction motor in this simulation are as follows:

- Rated motor power \(P_r \) = 2 kVA
- Rated motor voltage \(V_r \) = 230 V AC
- Rated motor frequency \(f_r \) = 50 Hz
- Stator resistance \(R_S \) = 14.85 mΩ
- Rotor resistance \(R_r \) = 9.2 mΩ
- Stator self-inductance \(L_s \) = 0.3027 mH
- Rotor self-inductance \(L_r \) = 0.3027 mH
- Mutual inductance \(L_m \) = 10.46 mH
- Number of poles \(P \) = 2
- Moment of Inertia \(J \) = 3.1 kg m\(^2\)
- Friction Factor \(F \) = 0.08 N m s
- Reference flux \(\lambda_s^* \) = 0.8 Wb

Fig.6. Simulation diagram of DTC based three phase induction motor control technique

DTC Subsystem:

Fig.7. Simulation subsystem diagram of DTC block

Fig.8. (a) Simulation subsystem diagram of fuzzy logic speed controller block (b) Fuzzy logic controller simulation subsystem

Simulation Waveforms of Proposed Scheme:

(a) (b) (c)
CONCLUSION

In this paper, an effective control technique is presented for direct flux and torque control of three-phase Induction Motor. In this proposed control technique the static PI-Speed controller is replaced by Fuzzy logic controller thereby reducing the stator flux and torque ripples. The two independent torque and flux hysteresis band controllers are used in order to control the limits of the torque and flux. The locus of the stator flux of proposed scheme is within the circle boundary created by six active vectors. Whenever there is a change of stator flux, the space vector switching are such chosen that the flux error remains within the band of the controller. The simulation result of proposed techniques was carried out for DTC of three-phase Induction Motor, the proposed control technique is superior for good speed regulator, low stator flux linkage, and torque ripples under transient and dynamic state operating conditions.

REFERENCES

