BLIND SYMBOL TIMING AND CFO ESTIMATION FOR OFDM/OQAM SYSTEMS

A. PAVANKUMAR

M.tech (DECS) 2 year, 12F01D3802, St. Ann’s College of Engineering & Technology, Chirala

Abstract: The paper deals with the problem of blind synchronization for OFDM/OQAM systems, specifically, by exploiting the approximate conjugate-symmetry property of the beginning of a burst of OFDM/OQAM symbols, due to the presence of the time offset, a new procedure for blind symbol timing and CFO estimation is proposed. The performance of the derived blind estimators is analyzed by computer simulations; the results show that the proposed methods may provide acceptable performance for reasonable values of the signal-to-noise ratio.

Index Terms: OFDM/OQAM, multicarrier systems, prototype filter, FBMC, synchronization, symbol timing, CFO.

I. INTRODUCTION

In the last years, the interest for filter-bank multicarrier (FBMC) systems is increased, since they provide high spectral containment. Therefore, they have been taken into account for high-data-rate transmissions over both wired and wireless frequency-selective channels. One of the most famous multicarrier modulation techniques is orthogonal frequency division multiplexing (OFDM), other known types of FBMC systems are filtered multitone systems [1], [2] and OFDM based on offset QAM modulation (OQAM) [3], [4], [5], [6]. The FBMC approach complements the FFT with a set of digital filters called polyphase network (PPN) while the OFDM approach inserts the cyclic prefix (CP) after the FFT.

Unlike OFDM, OFDM/OQAM systems do not require the presence of a CP in order to combat the effects of frequency selective channels. The absence of the CP implies on the one hand the maximum spectral efficiency and, on the other hand, an increased computational complexity. However, since the subchannel filters are obtained by complex modulation of a single filter, efficient polyphase implementations is of- ten considered [7]. Fundamental differences between OFDM and OFDM/OQAM systems concern the adoption (in the OFDM/OQAM case) of pulse shaping filters very well lo-calized in time and frequency [8], [9] and memory effects between useful symbols and transmitted signal due to the PPN.

OFDM/OQAM systems, as all multicarrier systems, are more sensitive to synchronization errors than single-carrier systems. For this reason, it is very important to derive efficient synchronization schemes. In the last years several studies...
The blind estimation algorithm proposed in [12] is based on the exploitation of the second-order cyclostationarity of the transmitted OFDM/OQAM signal; the convergence of such a method is particularly slow (too many symbol periods have to be processed) so that it is not useful in practice, unless severe signal-to-noise ratios are considered. Moreover, it is limited to the case where CFO is present but it is not dedicated to the joint CFO and timing offset estimation. However, [13] considers the case where both the offsets are jointly estimated by exploiting the cyclostationarity properties. In [14] an algorithm for blind CFO estimation is also proposed according to an approximate (for a large number of subcarriers) maximum-likelihood approach and it is shown its superior performance in comparison with the cyclostationarity-based methods. Moreover, in [15] a maximum likelihood method for blind CFO estimation suited for scenarios of low signal-to-noise ratio is proposed. However, the weak point of both proposed methods lies in their computational complexity.

In this paper, we analyze the conjugate-symmetry property that approximately holds in the beginning of a burst of OFDM/OQAM symbols. Using such an approximate property, a blind method for joint ST and CFO estimation is proposed. Although the proposed method is derived with reference to an AWGN channel, it is analyzed by computer simulation with reference to standard multipath channels; the numerical results show that the proposed method can represent a useful contribution to the blind timing synchronization when the OFDM/OQAM system operates over a multipath channel. Moreover, the same analysis shows that the proposed method provides a useful contribution to the coarse CFO compensation only for adequate signal-to-noise ratios. Preliminary results about the analysis of the approximate conjugate-symmetry property in the beginning of a burst of OFDM/OQAM symbols and its exploitation for ST and CFO estimation are reported in [16].

The paper is organized as follows. In Section II the OFDM/OQAM system model is delineated. In Section III the conjugate symmetry property (CSP) and the methods to detect it are recalled. In Section IV it is derived the proposed blind ST estimator exploiting the approximate CSP. In Section V the proposed blind CFO estimation method is described. In Section VI the performance analysis of the proposed blind estimators, carried out by computer simulations, is presented and discussed. Finally, conclusions are drawn in Section VII. Notation: $j = \sqrt{-1}$, superscript $(\cdot)^*$ denotes the complex conjugation, $[\cdot]$ the real part, $[\cdot]$ the imaginary part, $\delta(\cdot)$ the Kronecker delta, $|\cdot|$ the absolute value and $\angle[\cdot]$ the argument of a complex number in $[-\pi, \pi)$. Moreover, lowercase boldface letters denote column vectors, $\cdot$ the scalar product, $\times$ the component-wise product between two vectors and, finally, 0 and 1 denote, respectively, the null vector and the vector whose entries are all ones.

II. SYSTEM MODEL

Let us consider an OFDM/OQAM system with an even number $M$ of subcarriers. The received signal when the information-bearing signal $s(t)$ presents a timing offset $\tau$, a CFO normalized to subcarrier spacing $\Delta f = \frac{\alpha}{T}$ and a carrier phase offset $\phi$, can be written as

$$r(t) = e^{j\pi \tau} e^{j\phi} s(t - \tau) + n(t) \quad (1)$$

where $n(t)$ is a zero-mean complex-valued white Gaussian noise process with independent real and imaginary part, each with two-sided power spectral density $N_0$. The signal $s(t)$ is equal to

$$s(t) = s_R(t) + j s_I(t - T/2) \quad (2)$$

with

$$s_R(t) = \sum_{n=0}^{N_0+N_1-1} a_{n,m}^R e^{j\pi (\tau + \frac{\phi}{\Delta f T})} g(t - nT) \quad (3)$$

$$s_I(t) = \sum_{n=0}^{N_0+N_1-1} a_{n,m}^I e^{j\pi (\tau + \frac{\phi}{\Delta f T})} g(t - nT) \quad (4)$$

where $T$ is the OFDM/OQAM symbol interval, $A \subset \{0, \ldots, M-1\}$ is the set of size $M_0$ of active subcarriers, the sequences $a_{n,m}^R$ and $a_{n,m}^I$ indicate the real and imaginary part of the complex data symbols transmitted on the $m$th subcarrier during the $n$th OFDM/OQAM symbol, $N_0$ is the number of training symbols, $N_1$ is the number of payload symbols, while $g(t)$ is the prototype filter. Note that we assume that both the training symbols and the payload symbols are unknown.

The discrete-time low-pass version of the transmitted signal is given by

$$s[i] = s(t)_{t = iT_s} = s_R(iT_s) + j s_I(i - M/2)T_s \quad (5)$$

where $T_s = T/M$ is the sampling interval. Let us first consider the derivation of an efficient generation procedure for the signal $s_R(t)$. An analogous derivation can be straightforwardly obtained for the signal $s_I(t)$.

Since the continuous-time signal is generated by D/A conversion, we consider the generation of its discrete-time samples

$$s_R[i] = s_R(iT_s) = \sum_{n=0}^{N_0+N_1-1} a_{n,m}^R e^{j\pi (\tau + \frac{\phi}{\Delta f T})} g(iT_s - nM)T_s \quad (6)$$

$$s_I[i] = s_I(iT_s) = \sum_{n=0}^{N_0+N_1-1} a_{n,m}^I e^{j\pi (\tau + \frac{\phi}{\Delta f T})} g(i - nM)T_s \quad (7)$$
The generation of the sequence $s^R[i]$ is equivalent to the generation of the sequence of vectors $a^R_{n,m}$ defined as the $R \times 1$ vector whose $m$th component, say $a^R_{n,m}$, is equal to

$$s^R[nM + m] \quad m \in \{0, 1, \ldots, M - 1\}$$

$$= g_m(nM + m)$$

where we have denoted with $b^R_{n,m}$ the quantity

$$b^R_{n,m} = \text{IDFT}[w \times a^R_{n,m}]$$

$$m \in \mathbb{A}$$

(9)

which is the IDFT of the sequence $f^m a^R_{n,m}$ with respect to the index $m$. If we define the vector $b^R_{n,m}$ as the $R \times 1$ vector whose $m$th component (for $m \in \{0, 1, \ldots, M - 1\}$) is $b^R_{n,m}$ in (9), we can synthetically write

$$b^R_{n,m} = \text{IDFT}[w \times a^R_{n,m}]$$

(10)

where IDFT[] denotes the IDFT operator on the input vector and, for $m \in \mathbb{A}$, the $m$th component $w_{nm}$ of the $M$-vector $w$ is $w_{nm} = f^m$ and the $m$th component of the vector $a^R_{n,m}$ is the symbol $a^R_{n,m}$ in (3) while, for $m \notin \mathbb{A}$, $w_{nm} = 0$ and the components of $a^R_{n,m}$ are irrelevant. Note that (10) is only defined for $n \in \{0, 1, \ldots, N_r + N_i - 1\}$ but we can straightforwardly extend it to any $n$ provided that we assume

$$d^R_{n,m} = g_m(nM + m)$$

$$m \in \{0, 1, \ldots, M - 1\}$$

Since the prototype filter $g(t)$ can be nonnull only in the interval $[0,KT]$, it follows that the vector $g_m$ can be nonnull only for $m \in \{0, 1, \ldots, K - 1\}$, where $K$ is the overlap parameter, that is, the ratio between the length of the prototype filter $g(t)$ and the multicarrier symbol interval $T$. Consequently, (11) can be rewritten as

$$d^R_{n,m} = g_0 \times b^R_{n,0} + b^R_{n,1} \times g_1 \times b^R_{n,2} + \cdots + g_{K-1} \times b^R_{n,K-1}$$

(13)

A block diagram of the structure for the efficient generation of the symbol $s^R[i]$ in (6) is reported in Fig. 1. Analogously, the generation of the sequence $s^O[i]$ in (5) is equivalent to the generation of the sequence of vectors $d^O_{n,m}$ defined as the output of the PPN:

$$d^O_{n,m} = g_m \times b^O_{n,0} + b^O_{n,1} \times g_1 \times b^O_{n,2} + \cdots + g_{K-1} \times b^O_{n,K-1}$$

(7)

where $b^O_{n,m}$ is the $m$th component ($m \in \mathbb{A}$) of the vector $a^O_{n,m}$ in (4).

III. THE EXACT CONJUGATE SYMMETRY PROPERTY IN OFDM

In OFDM systems the vector $w$ in (15) has unit components, the PPN and the offset of $M/2$ samples are not present, i.e., the vector $d^R_{n,m} + d^O_{n,m}$ is defined as IDFT[$a^R_{n,m} + a^O_{n,m}$] and it is transmitted after cyclic-prefix extension. Therefore, if $a^O_{n,m} = 0$, the vector $d^R_{n,m} + d^O_{n,m} = d^R_{n,m}$ possesses the well-known CSP, as synthetically depicted in Fig. 2.

In the transmitted multicarrier symbol, the cyclic prefix is followed by $M$ samples that possess the CSP: if such $M$ samples are collected in the vector $[u_1 u_2 u_M u_{M/2}]$ (where the length of both vectors $u_1$ and $u_2$ is $M/2 - 1$), then $u_1 = u_2^\dagger$ where $u_2^\dagger$ denotes the flipped and conjugate version of $u_2$.

$$\begin{array}{c}
\phi \\
\hline
1 \quad 2 \quad 3 \quad 4 \\
M/2 - 1 \quad M - 1 \quad M/2 - 1 \quad M - 1
\end{array}$$

Fig. 2. Structure of the OFDM symbol for $a^O_{n,m} = 0$ [17] where $a$ and $b$ denote the positions where the CSP holds with respect to the positions $a$ and $b$, respectively, $c$ denotes a single position where the CSP holds with respect to the position $c$, but it is not used and, finally, $\times$ denotes positions where no CSP holds.

for $m = 0, 1, \ldots, M/2 - 2)$. In the signal received on a flat channel in the absence of noise and frequency offset, each cyclic prefix is followed by $M$ samples that possess the CSP: if such $M$ samples are collected in the vector $[u_1 e^{j\phi} u_2 e^{j\phi} u_{M/2} e^{j\phi} u_M e^{j\phi}]$ (where $\phi$ denotes the phase offset), then $v_1 e^{-j\phi} = [v_2 e^{-j\phi}]^\dagger = e^{j\phi} \overline{v_2}$ or equivalently

$$v_1 = e^{-j\phi} \overline{v_2}$$

(16)

This relation defines the CSP that is exactly possessed by the OFDM transmitted signal. Such a property can be utilized for synchronization purposes in OFDM systems with real data symbols as proposed in [17]: the end of the cyclic prefix and the phase offset can be determined by scanning the received signal and searching where such CSP is best approximated according to a least-squares approach, that is,
Blind Symbol Timing and CFO Estimation for OFDM/OQAM Systems

IV. THE APPROXIMATE CONJUGATE - SYMMETRY PROPERTY IN OFDM/OQAM

$m$th entry of $u_1$, denoted as $u_{1,m}$, is equal to $u^*$

In OFDM/OQAM systems, as noted in section II, the $m$th component of the vector $w$ in (15) is not unit but it is equal $2,M/2- m$

\[ d_{0,1}^{(R)} = g_{0,1} \times b_{0,1}^{(R)} \]
\[ d_{1,1}^{(R)} = g_{1,1} \times b_{1,1}^{(R)} \]
\[ d_{1,2}^{(R)} = g_{1,2} \times b_{1,2}^{(R)} \]

where we denote with $d_{k,k}^{(R)}$, $g_{k,e}$, and $b_{k,e}^{(R)}$ (for $k = 0, 1, 2$) the vectors obtained from $d_{k,k}^{(R)}$, $g_{k,e}$, and $b_{k,e}^{(R)}$, respectively, by extracting the first $M/2$ components; moreover, we denote with $d_{k,l}^{(R)}$, $g_{k,e}$, and $b_{k,e}^{(R)}$ the vectors obtained from $d_{k,k}^{(R)}$, $g_{k,e}$, and $b_{k,e}^{(R)}$, respectively, by extracting the last $M/2$ components. Analogously, relation (20) can be re-written with reference to the PPN in (14) by replacing the superscript $R$ with $I$. The impulse response of the considered prototype filter is reported in Figure 4 where the intervals used to extract from the prototype filter the vectors $g_{0,1}$, $g_{0,1}$, $g_{1,1}$, $g_{2,1}$, and $g_{2,1}$, introduced in (20), are specified. Let us remind that the vector $b_{k,1}^{(R)}$ exhibits the properties described by Figure 3 and, therefore, the vector $b_{k,1}^{(R)}$ exhibits the classical property described in Figure 2 over an interval of length $M/2$. The possess exactly the CS property. However, such a property is approximately present since the entries of $g_{0,1}$ are all negative real values. In fact, the original scalar product in (19) for two equal vectors $v_1$ and $v_2^*$ resulting from the exact CS property in $b_{k,1}^{(R)}$ = [v_1 v_1 v_2 v_2]

\[ (v_{1,m} \text{ denotes the } m \text{th component of the vector } v_1 \text{ for } m \in (0, 1, \ldots, M/2 - 2) \text{ becomes, when referred to } d_{0,1}^{(R)} = g_{0,1} \times b_{0,1}^{(R)}. \]

\[ \sum_{m=0}^{M/2-2} |v_{1,m} g_{0,1,m+1} | 2^{M/2-2-m} = \sum_{m=0}^{M/2-2} |v_{1,m} g_{0,1,m} | 2^{M/2-2-m} \]

\[ \sum_{m=0}^{M/2-2} |v_{1,m} g_{0,1,m+1} | 2^{M/2-2-m} = \sum_{m=0}^{M/2-2} |v_{1,m} g_{0,1,m} | 2^{M/2-2-m} \]
where $g_{0,\ell}$ denotes the $m$th entry of $g_{0,i}$ for $m \in \{0,1,2,\ldots,2^{M}-1\}$. Since now $g_{0,\ell+1} = g_{0,\ell \oplus 1}$ for any integer $\ell \geq 2$, the sum in the right-hand side of (22) is still positive and much larger than the value obtained for positions where such an approximate property does not hold. This permits the use of the test in (19) over intervals of length $2^{M}/2$ in order to detect the positions where the CS property holds if we had to operate over a sequence of vectors $\{a_{n}(\ell)\}$. Let us note that this approximately holds also if the sign of $g_{0,\ell + 1} \oplus i g_{1,\ell}$ is not constant; in fact, if such a sign assumes the same value for a large percentage of the $2^{M} - 1$ values of the sum in (22), then the term in the right-hand side of (22) is much larger than that obtained for a generic position where such an approximate property does not hold. Therefore, the approximate CS property can be detected by the test in (19) provided that a large percentage of terms in the sum in (22) has the same sign. The delay of $M/2$ samples that the output of the PPN in (14) exhibits with reference to the output of the PPN in (13) implies that

\[
\begin{align*}
\hat{d}_{0}^{(T)} &= g_{0,0} \times b_{0,0}^{(R)} \\
\hat{d}_{1}^{(T)} &= g_{0,0} \times b_{0,0}^{(R)} + g_{0,1} \times b_{1,0}^{(R)} \\
\hat{d}_{2}^{(T)} &= g_{0,0} \times b_{0,0}^{(R)} + g_{1,0} \times b_{1,0}^{(R)} \\
\hat{d}_{3}^{(T)} &= g_{1,0} \times b_{1,0}^{(R)} + g_{1,1} \times b_{1,1}^{(R)} + g_{0,1} \times b_{0,1}^{(R)} \\
\hat{d}_{4}^{(T)} &= g_{0,0} \times b_{0,0}^{(R)} + g_{0,1} \times b_{0,1}^{(R)} + g_{1,0} \times b_{1,0}^{(R)} + g_{1,1} \times b_{1,1}^{(R)} \\
\end{align*}
\]

where the vector $\hat{d}_{0}^{(T)}$ contains the first block of $M/2$ samples of the transmitted signal while $\hat{d}_{1}^{(T)}$ contains the second block of $M/2$ samples of the same signal and so on. Let us take into account that the choice of the prototype filter derived in [9] implies $g_{0} = 1$; moreover, $g_{0,0} = g_{0,1}$ and multiplication by $g_{0,1}$ in (20) implies that $\hat{d}_{0}^{(R)}$ does not $g_{1,0}$ $g_{1,1}$. Finally, $g_{2,0}$ $g_{2,1}$ and $g_{2,2} = g_{1,1}$. Consequently, (23) can be approximated as

\[
\begin{align*}
\hat{d}_{0}^{(T)} &= g_{0,0} \times b_{0,0}^{(R)} \\
\hat{d}_{1}^{(T)} &= g_{0,0} \times b_{0,0}^{(R)} + g_{1,0} \times b_{1,0}^{(R)} \\
\hat{d}_{2}^{(T)} &= g_{1,0} \times b_{1,0}^{(R)} + g_{1,1} \times b_{1,1}^{(R)} \\
\hat{d}_{3}^{(T)} &= g_{1,1} \times b_{1,1}^{(R)} + g_{0,1} \times b_{0,1}^{(R)} \\
\hat{d}_{4}^{(T)} &= g_{0,0} \times b_{0,0}^{(R)} + g_{0,1} \times b_{0,1}^{(R)} + g_{1,0} \times b_{1,0}^{(R)} + g_{1,1} \times b_{1,1}^{(R)} \\
\end{align*}
\]

The terms $\hat{d}_{k}^{(T)}$ for $k \geq 5$ share the structure of $\hat{d}_{4}^{(T)}$ since for $k \geq 5$ the two vectors with stronger entries are both present. From the previous discussion, it follows that, for $k \in \{0,1,2,3\}$, $\hat{d}_{k}^{(T)}$ possesses an approximate conjugate symmetry. With reference to the choice here considered, the entries of the vector $g_{0,i}$ are very weak so that $d_{0}^{(T)}$ is usually buried in the noise but also the entries of $d_{1}^{(T)}$ and $d_{2}^{(T)}$ are weak since the two leading vectors are $g_{2,2}$ and $g_{1,1}$ which include a large fraction of the prototype-filter energy. The vector $d_{T}^{(T)}$ is the first vector which is contributed by one of the two leading vectors so that $d_{T}^{(T)}$ is the first vector whose power is not negligible at usual signal-to-noise ratios; moreover, $g_{1,1}$ and $g_{0,1}$ possess a constant sign of the folded vector while $g_{1,0}$ possesses a non-marginal percentage of its $M/4$ entries of the folded vector with a different sign. Therefore, we can deduce that the test for approximate CS property achieves its maximum for $d_{T}^{(T)}$ while the values relative to $d_{0}^{(T)}$ and $d_{2}^{(T)}$ are much smaller. Finally, note that we obtain the argument of the top value ($\theta = \theta_{1}$) of the statistics $\Psi(\theta)$ in correspondence of the interval where the vector $d_{T}^{(T)}$ is present. The beginning of such an interval is shifted by $3M/2$ samples at the right of the beginning of the burst and $\theta_{1}$, which denotes the central value of such an interval according to (25), is shifted of $7M/4$ samples from the first sample of the burst. Moreover, $M$ samples on the left of the top value, we find another maximum ($\theta = \theta_{2}$) of the statistics due to the properties of $d_{T}^{(T)}$ and, in the middle point between them, we find a second maximum ($\theta = \theta_{3}$) due to the properties of $d_{3}^{(T)}$. Note that, though $g_{1,0}$ $g_{1,1},$ the value of the maximum in $\theta_{2}$ is only slightly larger than that in $\theta_{1}$ since the signs of the components of $g_{1,0}$, unlike those of $g_{0,1}$, are not constant. There is also a fourth maximum ($\theta = \theta_{4}$) due
Blind Symbol Timing and CFO Estimation for OFDM/OQAM Systems

V. BLIND CFO ESTIMATION

In this section we introduce two different methods for blind CFO estimation. The first method, dubbed method A, can be derived from the fact that from (24), where the division between the two vectors is defined component-wise. Consequently, in the presence of a normalized frequency-offset \( \varepsilon \) and neglecting the presence of noise and the effects of the channel, the entries of the vector \( \mathbf{D}_3^{(T)}/\mathbf{D}_1^{(T)} \) are all equal to \( \exp(j2\pi \varepsilon mM) = \exp(j2\pi m) \) since \( \mathbf{d}_1^{(T)} \) is extracted \( M \) samples on the left of \( \mathbf{d}_3^{(T)} \).

Therefore, we evaluate the angle \( \Phi_A \) of the average of the entries of \( \mathbf{D}_3^{(T)}/\mathbf{D}_1^{(T)} \), and, then, we estimate the unknown CFO as \( \phi_A/(2\pi) \). In calculating the average, we do not use the entries of \( \mathbf{D}_3^{(T)}/\mathbf{D}_1^{(T)} \) with amplitude larger than 2 as they are assumed to be outliers. Note that the extraction of the vectors \( \mathbf{d}_1^{(T)} \) requires a previous ST estimation and that the errors in timing compensation worsen the performance of the CFO estimator.

The method B uses the property that, under ideal condition, the angles in the scalar products corresponding to the top value

\[
\begin{align*}
\mathbf{D}_3^{(T)} &= \mathbf{d}_3^{(T)} \\
\mathbf{g}_{1,i} &= \mathbf{d}_1^{(T)} \\
\mathbf{g}_{0,i} &= \mathbf{D}_1^{(T)}
\end{align*}
\]

(26)
for \( m \in \{0, 1, \ldots, M - 2\} \), where \( v_{1,m}(\theta_l) \) is the \( m \)-th component of the vector \( v_l(\theta_l) \) \((m \in \{0, 1, \ldots, M/4 - 2\}) \) and \( 1 \in \{1, 2\} \) and \( g_{1,m} \) \((m \in \{0, 1, 2, \ldots, M/2 - 1\}) \). The CS property implies \( v_1(\theta_l) = 2v_2(\theta_l) \) \((i.e., v_{1,m}(\theta_l) = v_{2,m}(\theta_l) \) \( m \in \{0, 1, \ldots, M/4 - 1\} \)) and, consequently, (30) becomes

\[
\begin{align*}
\nu_1(e^{i\theta})(\theta_l) &= \nu_2(e^{i\theta})(\theta_l) = \nu_1(\theta_l) = \nu_2(\theta_l) \\
&= 2^{\frac{M}{2}} \prod_{m=0}^{M-2} g_{1,m} g_{1,m+1} \cdot 2^\frac{M}{2} \prod_{m=0}^{M-2} g_{1,m} g_{1,m+1} = 2^{\frac{M}{2}} \prod_{m=0}^{M-2} g_{1,m} g_{1,m+1}
\end{align*}
\]

In order to evaluate the phase difference between the quantities in (29) and (32), we have to note that (see also Figure 4)

\[
\begin{align*}
\nu_1(\theta_l) &= 2^{\frac{M}{2}} \prod_{m=0}^{M-2} g_{1,m} g_{1,m+1} \\
\nu_2(\theta_l) &= 2^{\frac{M}{2}} \prod_{m=0}^{M-2} g_{1,m} g_{1,m+1} \\
\end{align*}
\]

VI. NUMERICAL RESULTS

In this section the performance of the proposed blind methods for ST and CFO estimation is assessed via computer simulations. A number of \( 10^6 \) Monte Carlo trials have been performed under the following conditions (unless otherwise stated):

1) the considered OFDM/OQAM system has a bandwidth \( B = 1/T_s = 11.2 \) MHz and \( M \in \{4096, 2048, 1024\} \) subcarriers while the overlap parameter \( K \) is fixed at \( K = 4; \)
2) all the transmitted symbols are the real and imaginary part of 4-QAM symbols;
3) the considered multipath fading channel models are the ITU Vehicular A and the ITU Vehicular B [19];
4) the channel is fixed in each run but it is independent from run to another;
5) the timing offset is uniformly distributed in \( \{3M, \ldots, 4M - 1\} \), i.e., at least three symbol intervals of pure noise are included at the beginning of the transmitted signal; the overall length of the observed interval is 10M samples;
6) the normalized frequency offset is uniformly distributed in the range \([-0.45, 0.45]\).

Since the use of test (25) is not associated with a marginal computational complexity, we limited the use of the test to an interval of length equal to \( M/4 \) samples centered on the estimate has been obtained by filtering the squared antiphase \( r_i(t) - r_i(t-M) \) of the received signal \( r(t) \) with a series of two causal moving-average filters of \( M \) samples, which are simple to implement:

\[
s(t) = s(t-1) + r(t) - r(t-M) \]

Fig. 7. RMSE of the proposed ST estimators over AWGN, ITU-A and ITU-B channels for \( M = 4096 \).

From (29), (32), (35), and (36) it follows that

\[
\zeta = \left( \nu_1(e^{i\theta})(\theta_l) \cdot \nu_2(e^{i\theta})(\theta_l) \right) - \left( \nu_1(e^{i\theta})(\theta_l) \cdot \nu_2(e^{i\theta})(\theta_l) \right) = 2\pi^2 + \pi
\]

Finally, we introduce the method C that defines its output as the average of the results obtained by the methods A and B. For all three methods, to avoid ambiguities in the estimate, the condition \( |\epsilon| < 0.5 \) must be satisfied since they estimate \( \epsilon \) through the complex quantity \( \exp(j2\pi\epsilon) \).

\[
\begin{align*}
\nu_1(\theta_l) &= 2^{\frac{M}{2}} \prod_{m=0}^{M-2} g_{1,m} g_{1,m+1} \\
\nu_2(\theta_l) &= 2^{\frac{M}{2}} \prod_{m=0}^{M-2} g_{1,m} g_{1,m+1}
\end{align*}
\]

Fig. 6. Performance of the coarse estimator measured as rate for which \( |\Delta l| > M/8 \) where \( \Delta l \) denotes the timing error of the coarse procedure.
Blind Symbol Timing and CFO Estimation for OFDM/OQAM Systems

\begin{equation}
P(i) = P(i-1) + s(i) - s(i-M)
\end{equation}

where we have denoted with \(P(i)\) the final signal and initialized with null values the recursions \(2M\) samples before the beginning of the considered interval \(\{0, 1, \ldots, 10M - 1\}\). Let us denote with \(P_{\text{max}} (P_{\text{max}})\) the maximum (minimum) value of \(P(i)\) over the candidate interval of \(10M\) samples. Then, we search the time step \(N_p\) such that

\begin{equation}
N_p = \arg \min_i P(i) = \frac{P_{\text{max}} + P_{\text{min}}}{2}
\end{equation}

The coarsely estimated time-step where the burst begins is given by \(N_p = \frac{11M}{4}\). In fact, according to the approximations in (24), only during the transmission of \(d_k^{(0)}\) the power of the transmitted signal is not negligible and is about the half of the power transmitted by \(d_k^{(1)}\) for \(k \geq 4\). Therefore, the sequence \(s()\) will start to significantly deviate from zero \(3M/2\) samples after the beginning of the burst and will roughly saturate \(3M\) samples after the same beginning; consequently, the sequence \(P()\) will start to significantly deviate from zero \(3M/2\) samples after the beginning of the burst and will roughly saturate \(4M\) samples after the same beginning. Roughly assuming a linear increase of the sequence \(P()\) in such an interval, we obtain

\begin{equation}
P(i_o) = \frac{P_{\text{max}} + P_{\text{min}}}{2} \Rightarrow i_o = \frac{3M + 4M}{2} = \frac{11M}{4}
\end{equation}

course estimate of the beginning of the burst. Such a coarse

The interval of \(M/4\) samples for searching the properties of conjugate symmetry is then centered \(\frac{1}{2} M\) samples (see Section IV for the delay between \(\theta_1\) and the beginning of the burst) after the beginning of the burst and, therefore, at time-step \(N_p = M\).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig8.png}
\caption{RMSE of the proposed ST estimators over AWGN, ITU-A and ITU-B channels for \(M = 2048\).}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig9.png}
\caption{RMSE of the proposed ST estimators over AWGN, ITU-A and ITU-B channels for \(M = 1024\).}
\end{figure}

The noise effect on the statistics in (25) can have a significant impact since it may lead to single out a position that is not correct. In such a case, there is not guarantee that the error remains small because any time step of the observed interval may be selected. In order to reduce the effects of such outliers on the overall performance, we set a threshold \(\Sigma\) and we utilize the algorithm for timing estimation only when the statistics in (25) is larger than \(\Sigma\); otherwise, we provide as output of the overall timing estimator the coarse estimate obtained by using (39).

Figure 6 shows the rate of wrong selection of the restricted interval by means of the coarse procedure. We notice that the coarse procedure is a valid method to restrict the search interval for larger \(M\); however, it becomes poorer for smaller \(M\) since the interval length \(M/4\) becomes smaller while the performance of the coarse procedure is practically independent of \(M\) since it filters the instantaneous power of the received signal. Note that no wrong selection has been observed on AWGN channel for \(M = 2048\) and \(M = 4096\).

Figure 7 displays the root mean square error (RMSE) (normalized to the number of subcarriers \(M\)) of the proposed blind ST estimator as a function of \(E_b/N_0\) both on AWGN channel and on multipath channels ITU-A and ITU-B for \(M = 4096\). It is worthwhile to emphasize that in AWGN no errors were observed in the performed \(10^3\) trials. For comparison purposes it is also reported the performance achieved by the coarse procedure (39) in order to appreciate the gain of the proposed method. Figure 7 shows that the smaller value of the threshold \(\Sigma = 0.1\) provides improved performance over the choice \(\Sigma = 0.2\). For smaller values of \(E_b/N_0\), the choice of the threshold \(\Sigma\) should be optimized empirically to the system parameters: smaller values of the threshold often improve performance but also increase the probability of outliers in timing estimation. The proposed algorithm provides a strong improvement over the coarse procedure in AWGN and ITU-A channels and it allows one to achieve on ITU-B channel a performance better than that assured by the coarse procedure over AWGN channel.

Figures 8 and 9 report the same curves considered in Fig. 7 for values of \(M = 2048\) and \(M = 1024\), respectively. Note that for smaller values of \(M\) the performance worsen: for \(M = 2048\) the performance of the proposed method on ITU-B channel is equivalent to that of the coarse method on AWGN channel while it becomes poorer for \(M = 1024\). The figures provide also a reasonable interval of values of the threshold \(\Sigma\) that can be exploited by the estimator to achieve an acceptable performance.
CONCLUSIONS

The problem of blind synchronization for OFDM/OQAM systems has been considered. Specifically, a new method for blind ST and CFO synchronization has been proposed by exploiting the approximate CSP of the beginning of a burst of OFDM/OQAM symbols due to the presence of the time offset.

The results of the performance analysis with reference to the considered OFDM/OQAM system show that the proposed blind ST and CFO estimators, complemented by a simpler coarse ST estimator, achieve acceptable performance for realistic values of Eb /N0.

REFERENCES


